Lab Receiver Test Data Comparisons

(ARRL QST Review Data, plus some data from Sherwood Engineering) XX/YY = (preamp-off) / (preamp-on); 14Mhz operation, 500 Hz CW filter, AGC off, High Ip mode.

All measurements in dB. Lab tests and rigs can vary by several dB, so results within 2-3 dB are roughly equivalent.

Numbers in **RED** indicate data that is 10 dB or more worse than for the K3. (A factor of ten signal power difference.)

RIG	MDS (dBm)	BDR	BDR	IMD DR3	IMD DR3	Ip3 (dBm)	Ip2 (dBm)	Phase	Receive
	Sensitivity	'Desense'	'Desense'	'Intermod'		20 kHz spacing	Out of band Signal	Noise (dBc at +4 kHz)	Current
	pre off / on	5 kHz spacing	20 kHz spacing	5 kHz spacing	'Intermod'	5 kHz spacing	Rejection pre off / on		(Also see below)
		pre-amp off	pre off / on	pre-amp off	20 kHz spacing	pre off / on			
K3 (ARRL)	-130/-137	139 (2 kHz)	139/134	102 (2 kHz)	pre off / on 103/99	+26/+14	+79/+79	-133 (4 kHz)	800 mA
K3 (Sherwood Eng.)	-130/-138		140 (100 kHz)	101 (2 kHz)	104	+26 (2 kHz)		-139 (10 kHz)	
K2	-130/-136	135	134 / 126	91	97 / 95	+21/+8 (20kHz) +21/+8 (5kHz)	+80 / +79	-124	150-200 mA
Ten-Tec Orion II	-127/-137	136	136/134	96	92/90	+20/+6 (20kHz)	+82/+80	-138	3.6A
			120/125			+20 (5 kHz pre off)			
FTdx9000D	-122/-134	127	138/137	95	99/99	+27/+15 (20kHz)	+64/+66	-120	110 V Supply
10.7000		115	127/129/125	00	104/102/102	+20/+10 (5 kHz)		120	110 1/
IC-7800 See Note 2	-127/-138/-142	115	137/138/135	89	104/103/102	+37/+21/+11 (20kHz)	+98/+87/+84	-120	110 V Supply
						+22/+7.7/+0.5 (5 kHz)			
Ten-Tec Omni6+ See Note 1	-133	119	123 (nl)	86	97	+12 (20kHz)	+58	-117	2A
Ten-Tec OMNI VII	-130/-140	135	137/134	84	91/ 91	+11/-0.5	+73/+75	-110	2.2A
FT-1000MP	-128 /-135	119	142 / 137	83	97 / 94	+6.5 (5 kHz) +15 / +5 (20kHz)	+86/+88	-118	2.8A
		117				+137+3 (20KHZ)	+ 80/ + 88		2.0A
SDR-5000	-123/-135		123	96 (2 kHz)	96			-123 (10 kHz)	
(Sherwood Eng.)	-121/-135	113	113	98	99/99	+26/+14	+69/+45	-120	2.8A
SDR-3000	-121/-133	115	115	90	99/99	+20/+14 +22 (2 kHz)	+09/+43	-120	2.0A
IC-7600 NEW	-131/-139	113	122	94 (5 kHz)	106/102	+28/+12	+63/+59	-118	2.4A
				88 (2 kHz)		+10 (5 kHz pre-off)			
IC-756PRO III See Note 2	-131/-139 /-141	101	121/119/113	77	103/100/99	+25/+14/+5 (20kHz) -17/-29/-35 (5 kHz)	+73/+71/+68	-126	3.4A
IC-756PRO II	-131/-139/-141	100	118/116/107	76	97/95/91	+20.2/+10.2/-4.1 (20kHz)	+75/+71/+59	-130	3.5A
See Note 2		104	127/125/120					120	
IC-756PRO See Note 2	-128 / -136 / -140	104	127 / 125 / 120	80	95 / 92 / 88	+15.4 / +4.3 / -6.9	+64 / +63 / +43	-130	3A
IC-746PRO	-132/-140 /-142	100	125/123/118	75	97/96/92	+13.5/+3.7/-4	+72/70/+54	-123	1.9A
See Note 2									
TS-870	-129 / -139	not tested	127 / 123	not tested	97 / 95	+16 / +4	+63 / +63	-118	2A
TS-930	-139	not tested	noise limited	not tested	86.5	-7.75	not tested	not tested	110V supply

See Note 1									
Ten Tec Argo V	-132	67	118	62	85	-3.4	+47	-108	1A
Model 516									
See Note 1									
Ten-Tec Jupiter See Note 1	-135	not tested	123(nl)	not tested	85(nl)	+7.3	+53.6	-115	1.5A
Ten-Tec Scout See Note 1	-125	not tested	119	not tested	87	+5.5	not tested	-95	600 mA
Ten Tec Pegasus	-132	not tested	110 (nl)	not tested	77	+7.2	+44.3	-104	1A
See Note 1									
TS-50	-132/-139	not tested	113 / 109	not tested	90 / 88	+3 / -7	not tested	-115	800 mA
FT-100	-133/-137	~100	+130/+125	~70	94/91	+10/+4.2	+51.7/+52.8	-118	1.5A
See Note 3									
FT-817	-126/-134	not tested	106/104	not tested	87/84	+5/-5.6	+84/+88.4	-103	450 mA
FT-897	-133/-137	96 (nl)	109/106	67	89/86	-1.3/-6.7	+67/+62	-102	900 mA
IC-703	-131/-141	95	121(nl) /122(nl)	76	89/91	+11/+1.9	+56/+47	-118	320-580 mA
IC-706MKIIG	-136/-142	86	122(nl) / 120(nl)	74	89 / 86	-1.3 / -11	+36.4 / +38.5	-118	2A
Kachina 505DSP	-133 / -142	not tested	103 / 103	not tested	99 / 97	+15.5 / +3.5	+49 / +30	-117	2A

Note 1: Only one set of numbers is listed because these radios use a fixed gain front end which is not switchable. Compare their dynamic range and IP3 numbers to other rig's by using similar MDS figures to determine which set of numbers to use (pre-on / pre-off) for comparison.

Note 2: The IC-7800, IC-756PRO & PROII and IC-746PRO have two different gain preamps. Numbers are for Pre-Off / Pre #1 / Pre #2. Pre #2 adds more RX gain than Pre #1 at the expense of dynamic range. Higher preamp gain reduces strong signal dynamic range. For comparison, <u>Pre-Off and Pre #1 most closely match the K2's and other radio's settings</u> and are the most commonly used positions.

Note 3: FT-100 5 kHz dynamic range numbers taken from swept dynamic range graphs in ARRL expanded test report.

ARRL Results are from QST rig reviews (K2, 2/04 (K2/100) and 3/00 (K2) reviews); IC756 PRO, 6/00; Omni6+, 11/97; FT1000MP, 4/96; Scout, 12/93; TS-50, 9/93; SGC-2020, 10/98; IC706MKII, 7/99; Ten Tec Pegasus, 2/00; Ten Tec Jupiter, 6/01; TS-930, 1/84; Kachina 505DSP, 5/98; Patcom PC-1600A, 12/00; FT817, 4/01; FT-100, 6/99, Argo V 4/2003; FT-897, 5/2003; IC-703, 7/2003; Orion II 9/06; IC-7800, 8/04; 756PRO-III, 3/05; FTdx9000D, 8/05; SDR-3000, 10/09; IC-7600, 11/09). Sherwood Engineering results are from their receiver test results page. K3 (QST, 4/08) (Sherwood Engineering, 2/08); SDR-5000 (Sherwood Engineering, 2/08); OMNI VII, 7/2007

5 kHz Signal Spacing (ARRL Lab Results & Comments)

Rig Minimum Supply Voltage and Current Requirements

RIG	Min. RX Current Drain	Min. Supply Voltage	Notes
К2	150 mA to 200 mA	9V	Note 1A, 1B
FT-1000MP	2.8A	13.5 V	
IC-756 PRO*	3A	11.7 V	
IC-756 PRO II*	3.5A	11.7 V	
Ten-Tec Omni6+	2A	12.0 V	
Ten-Tec Orion	3.1A		
Ten Tec Argo V	1A		
Model 516 NEW			
IC-703 NEW	320 mA to 580		

	mA		
FT-897 NEW	900 mA		
TS-870	2A	11.7V	Note 3
TS-930	110 V supply	110 V supply	
Kachina 505DSP	2A	unknown	
Pegasus 550DSP	1A	12V	
Ten-Tec Jupiter	1.5A	12 V	
Patcom PC-1600A	3.3A	unknown	Note 4
FT-817	450mA	8 V	
FT-100	1.6 A	unknown	
IC-706MKIIG	2A	11.7 V	
TS-50	800mA	11.7 V	Note 4
Ten-Tec Scout	600mA	12 V	
SGC-2020	430mA	10.5 V	Note 2

Note 1A (K2 supply voltage): The table below shows the recommended maximum power output setting vs. supply voltage. Supply voltage was measured at K2 DC input jack in transmit mode. (The reverse-polarity protection diode, D10 on the K2 RF board, was a 95SQ015. This diode is supplied with all K2s with s/n 3000 or higher. Older K2s used an SB530 diode; add 0.3 V to the DC voltages in the table in this case. Upgrading to the 95SQ015 diode is recommended for use at low supply voltage.)

DC VOLTAGE	POWER OUTPUT
9.0 V	2.0 W
9.5 V	5.0 W
10.0 V	7.0 W
10.5 V	10.0 W

Note 1B (K2 current drain): 0.15-A minimum receive current is with receiver in OPT BATT (battery save) mode. In OPT PERF (performance) mode, minimum receiver current is approx. 0.2 A. All K2 receiver performance measurements were made using OPT PERF mode (see "ARRL Lab Receiver Test Data Comparisons" table, above).

Note 2 (SG2020): Different user's manual editions claim 11 V or 9 V minimum. SGC tech support says the 9 V claim is incorrect, and that the actual minimum is

10.5 V. This is consistent with the LM2940-10 voltage regulator used. Max power output at reduced voltages not specified.

Note 3 (TS870): Standby current drain shown. Active current drain not specified.

Note 4 (Patcomm, TS-50): Current drain not specified. Used ARRL test data.

Definitions of Receiver Comparison Test Results

nl = test was noise limited (noise floor rose 1db before 1db of blocking desense occurred)

MDS = Minimum Discernible Signal (3db increase above noise floor). Larger negative numbers are generally better, but too much sensitivity can reduce strong signal dynamic range and Ip3. <u>Pre-Amp On</u> MDS numbers of -130 dBm or more are more than adequate for most HF band operating, since band noise is typically above this number. (*Lower frequencies need less MDS (more +number) due to an increase in atmospheric noise.*)

IMDDR3 = 2 tone (20 kHz spacing) 3rd order Two tone IMD Dynamic Range. This test shows how the RX performs in the presence of multiple strong nearby signals in relation to its sensitivity (MDS). Higher is better. <u>Pre-Amp Off</u> IMDDR3 numbers of +95dB (20 kHz spacing) and +90 dB (5 kHz spacing) or more are considered good.

Ip3 = 2 tone (20 kHz spacing) 3rd order Intercept Point. This test also shows how the RX performs in the presence of multiple strong nearby signals. Higher is better. <u>Pre-Amp OFF</u> IP3 numbers of +15dBm are good, and +20dBm or more is excellent. *Note: Low RX sensitivity artificially increases the measured Ip3*.

Ip2 = 2 tone (8.020MHz, 6.000MHz) 2nd order Intercept Point This test shows how the RX performs in the presence of multiple strong out of band signals (such as broadcast signals on 6Mhz and 8Mhz creating birdies at 14Mhz). Higher is better. A <u>Pre-Amp OFF</u> IP2 of +55dBm is OK, and +70dBm or more is considered excellent.

BDR = Blocking Dynamic Range (20 kHz spacing). This test shows when the receiver's sensitivity begins to drop in the presence of strong near by signals. (Desense). A <u>Pre-Amp OFF</u> BDR (20 kHz signal spacing) of greater than 120dB is good. Greater than 130dB is considered excellent. BDR decreases on most multi-conversion receivers as the interfering signal spacing from the receiver's listening frequency is reduced. Single conversion receivers like the K2 typically do not see as much of a BDR degradation as interfering signal spacing is reduced.

Phase Noise = value read from ARRL test graph at ± 10 kHz from the carrier. Numbers are for the worst case band. Larger negative numbers are better. Bad phase noise contributes to poor RX Blocking Dynamic Range (desense from nearby signals) and broadband TX noise. Good values are ± 130 dBc or better at ± 10 kHz. See the actual ARRL phase noise plots in each review for details of other spurious phase noise components.

Last Edited: March 16, 2016

Products Order Shipping Status	eMail List Firmware & S/W Mods & Notes Articles & Reviews News
	Rig Comparisons Builder Resources Manuals & Downloads Contact About

Elecraft ® is a registered trademark of Elecraft, Inc. Specifications and Pricing subject to change. All text and pictures ©1998-2017 Elecraft, Inc. Permission given for non-commercial usage of our images by our customers, clubs and news organizations. Those requesting other use of images must contact Elecraft for permission.

